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INTRODUCTION

Although lofting of burning brands in forest fires has received considerable attention [1-4],
little research has quantified the transport of brands from burning structures. This mechanism of
fire spread is of particular importance in post-earthquake and urban/wildland intermix fires [5].
The 20 October 1991 Oakland Hills Fire, which cost more than $1 billion, was propagated prima-
rily by flaming brands deposited hundreds of meters ahead of the fire front [5]. Perry [6] esti-
mated that for every burning house with a wood-shingle roof, 600 shingles were lofted. This
model for brand lofting follows the seminal work of Taylor [7]. Previous studies by Tarifa et al.
[8, 9] and Lee et al. [10, 113 made the assumption of a constant vertical velocity above the fire
source. Here a burning house is more accurately represented as an axisymmetric pool fire with a
Baum and McCaffrey plume [{2].

ANALYSIS
Force Balance
Conservation of brand momentum [7] is
a‘%(mV) = ZFL M
i
where V is the particle velocity with respect to ground, F; are forces on the particle, and m is the
mass. A spherical body in a velocity field is affected by two forces: drag and gravity. The gravity

force is

Fg = -mg, ()}
where g is the acceleration due to gravity. The drag force is

Fy = %Cdpalwlz%/\c . )
where A_ is the cross-sectional area of the brand, p, is the density of air, Cy is the drag coefficient,
and W is the relative velocity of the plume to the particle, W = U - V. The drag force acts in the
direction of W with a strength proportional to the square of [W|. With the above, the force-bal-
ance, Eq. (1), becomes

d 1
§(MY) = 3P, ACIWIW -mg - @
1

137 — /30



The change in momentum in Eq. (4) offsets the drag and gravity forces. Schematics of the brand,
coordinates, forces, and fire plume can be found in Figs. 1 and 2.

To pessimize the lofting problem, the fire plume velocity is assumed to be strictly vertical
with the magnitude of the centerline of the plume. With time-dependent particle mass and veloc-
ity, the acceleration of the particle is

dv _ 1/P.ALCy V\dm
E ) L Sy o <

In this study, the brands are modeled as spheres to obtain an explicit dependence on size
and to employ the available literature for C4. The mass and cross-sectional area of a sphere,

m = (ndpg)/6 and A_ = (nd?)/4 , are introduced into Eq. (5), where p, is the homogenized
density of the particle and d its diameter. The acceleration becomes

dv _ 3(Pa\(Cq 11dPs | (3)dd
= ST+ @8- ®

The first term on the right-hand side of Eq. (6) is the acceleration of the particle due to drag. The
second and third terms express the acceleration from the change in particle mass with respect to
time (dp,/dt and dd/dt are < 0). The final term is the deceleration due to gravity.

Plume Model

Several models quantify the fire plume velocity field [7,12-14], each applicable to differ-
ent conditions. This study uses a slightly modified version of the Baum and McCaffrey (B-M)
plume model [12], which idealizes a fire as a low-momentum burner flame and separates the
height above the burner into three distinct regions: continuous flame, intermittent flame, and
plume (Regions I, I, and IIT in Fig. 2). In Region I, the flame is continuous and the combustion
process heats the gasses within this region, increasing the gas velocity. Region II contains the full
range of intermittent visible flame patches; the periodic action of these patches keeps the averaged
centerline velocity constant in this region. Region III covers the non-combusting thermal plume
above Region I, where the plume velocity decays due to entrainment of the surrounding air and
turbulent spreading of the plume width.

The B-M centerline plume velocity is given by

Upm = Ay(z")", M
where Ugyy = Upp/Uc, 2" = 2/2, U= ((Qo82)/(Pac, To))' " s 2= (Qo/ (P4, Ty ) VEN 2,
and A; and n; are given in Table 1. Q, is the rate of heat release for the fire and p,, Cpr and T, are
the ambient density, specific heat, and temperature. A detailed derivation of the characteristic
quantities is given in [15]. The centerline velocity is shown in dimensionless form in Fig. 3. To
ensure that the equations are Lipshitz-continuous, the velocity between Regions I and I and
between II and III is matched near z" = 1,32 and 3.3 using two, fifth-order polynomials.
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Table 1: Baum and McCaffrey Plume Velocity Parameters

Region (j) Range A n;
I 0<z2°<1.32 2.18 12
I 1.32<2°<33 2.45 0
11} z' 233 3.64 -1/3

Diameter Regression Models

Two regression models are used in this study. Non-burning spheres clarify the particle
dynamics, and a burning droplet in quiescent air provides more realistic lofting paths for combus-
ting spherical brands. The brand mass loss is assumed to occur only by surface regression; i.e., a
constant density is assumed. Density variation due to charring, forced flow, and comparison with
experiments will be developed in future work. The regression rate for a non-burning sphere is

— =0. 8
This trivial equation allows the determination of the maximum height to which a sphere of a given
diameter can rise.

The burning-droplet problem models a spherical fuel particle combusting in an oxidizing,
quiescent atmosphere. Although the combustion zone surrounding a spherical particle is not
strictly spherical -- due to the buoyancy forces on the hot gases from combustion -- the burning-
droplet equations assume spherical symmetry for simplicity {20,21]. The combustion is assumed
to be quasi-steady; a surface mass balance relates the brand mass loss rate to the surface regres-
sion rate,

. dmdPpg nd?p, rdd
= 450) - 2209

A surface energy balance provides a second expression for m, due to heat feedback from the
flame,

m = 2ndp,Din(1 +B), (1)
where D is the diffusivity of fuel vapor in air and B is the fuel mass transfer number, The Lewis
number, Le = o/ D, is assumed to be unity. See [20] for a discussion of this assumption. The
two mass loss rates are equated to find the regression rate of the spherical brand diameter,

dd Pa)ln(l + B)
— = -4q| = | ——FL . 1

at (ps d (o
Initial Conditions

In this problem, there are three dependent variables, V, d, and z, and one independent vari-
able, t. (U is determined by z from Eq. (7) and thus is not a separate dependent variable; p, is
assumed constant.) The velocity and acceleration of the brand are assumed to be zero at t=0 and

3
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the density and diameter of the brand are known initially; only the initial height is not known apri-
ori.

For the B-M plume model, there is a unique height, z,,, below which brands of a given ini-
tial diameter cannot be lofted. Brands can be lofted only where the relative velocity exceeds their
terminal velocity; this holds for both combusting and non-combusting particles. Because the
brand velocity is initially zero, W equals Uy, which is always positive, and Eq. (6) reduces to

dv  3/Pa\(Cq
I = Z(.p—:i)(?jjmeP—g (12)

att=0. The terms on the right side of Eq. (12) exactly balance when dV/dt = 0, which identifies
the minimum height at which the plume can support a spherical particle of a given diameter. Sub-
stituting for Region I from Table 1 and solving for z,,, the initial brand height is

(R ”

Substituting for Region III from Table 1 and solving for z,,,, the maximum loftable height is
3(Ca\(Pa)3.642)"
e (P -
4 .d Ap,/ g ¢

The drag coefficient, Cg4, primarily depends upon Reynolds Number and body shape.

Drag Coefficient

There are numerous equations in the literature correiating Cy4(Re) for spheres near terminal veloc-
ity [16-19]; that of Haider and Levenspiel [19] is accurate for Re < 2.6 x 10°. This equation,

24 0.4251(Re)
= 22140 0.6459
Cq Re( +0.1806(Re) )+ Re + 6880.95 ' 13

is shown in Fig. 4. The coupled set of Egs. (13 or 14 and 15) must be solved iteratively because
Cd( Re=(U,,d)/v ).

Non-Dimensionalization

Maximum information, in terms of the minimum number of parameters, is extracted from
equations that are dimensionless with respect to the appropriate characteristic quantities for each
variable [21]. The equations to be non-dimensionalized are

dv _ 3/Pa\(Cyq 3\dd [ 1dps
& = e VIO (()5 ()R o o

dd/dt (either Eq. (8 or 11)), and dz/dt = V. Note that dp,/dt =0 is assumed here. The dimen-
sionless variables and parameters are defined as

U
v*=Ul U%:# z‘=Z£ d*=§- pr =B t‘=ti. an

C C [ c - pC c
where U, and z, are defined after Eq. (7) and t, = z /U, = U/g. C4is a function of

Re = ((Uy, - V)d)/v. Using Egs. (17), the Reynolds number becomes

4
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* * * dCUC

Re = (U, -V')d (-v—) (18)
where U_ is defined by the plume model. At this point, the Reynolds number will chan ge with any
variation in the characteristic velocity, i.e., different fire strength or ambient conditions. If
d,=v/U_, however, the Reynolds number becomes only a function of dimensionless variables.
Therefore that choice for d,, is made and

Re = (U, - V.)d*. (19)

Substituting Eqs. (17) into Eq. (16) gives

R R G

p-/dt
from which the characteristic density becomes

375

_ PatcU2 (p_) Q,¥e o
Pe= "V PapTo)
The dimensionless brand acceleration equation is then
* C *
v _ 3(,—"*)|U;m —VH-V ((3)‘” +( )dp ) L. @)
dt 4\p*d dat*  \p*/dt*
The dimensionless brand diameter regression rate, from Eq. (8) or Eq. (11), is either
dd*
=0, (23)
dt*
or
% - _(4In‘(l‘+ B)) 24
dt dp’Pr
where Pr = v/« is the Prandtl Number. z*(t*), needed for U,;m , is obtained from
dz_ _ v+, 25)
dt

Egs. (22) and (25) must be solved simultaneously with one of Egs. (23) or (24); the initial condi-
tions are t'= 0, V;(0) =0,z"(0) =z}, and d"(0) = d_.
The initial dimensionless particle height, from Eq. (13), is

. d'p .
.= 0.29( E:) . 26)
The maximum dimensionless loftable height, from Eq. (14), is
31( Ca ) 27
max po do " (
The initial Reynolds number can be calculated from
dl *
= d3Up . (z)) = d;U,’;m(O.29 E:p°) . (28)
d

because W reduces to Uy, initially. For the burning-droplet case, Re, is also the maximum Re

5
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for that brand. When 1.2 x 10* <Re < 2.6 x 10°, the initial Reynolds number is
Re, = 1.72(d y"2(p)!/? . 29

0

A plume with a particular p; has a maximum loftable d; . The terminal velocity of this
d;. max 18 €qual to the maximum plume velocity, which exists at z; = 1.28 in RegionI. Solving
Eq. (26) with this z;,, a relationship can be developed between d;' max

=0.45, a good approximation for 1.2 x 10% <Re < 2.6 x 10°, the maximum dimensionless loftable

and p;. Assuming that Cy

diameter is

=2 30,

0, max

for py < 1/2700.
LOFTING RESULTS
Non-Burning Spheres

Analyzing the path of non-buming spheres provides benchmarks against which other
regression rates can be compared. In the non-combusting case, there are two dependent variables,
V* and z*; one independent variable, t*; and two constant parameters, p; and d; . Results are
presented for 2000 < d; < 15000 and p; | = 1/90000<p;<1/7600 = p; , These dimen-
sionless densities correspond to SOMW and 3GW pool fires for cedar wood (p, = 300 kg/m?) in
air. The former approximates a house fire, while the latter approaches the intensity of the 20
October 1991 Oakland Hills Fire early in its development. The diameter range corresponds to
brand sizes of 0.5 cm £d £ 3.5 cm for the SOMW fire and 0.2 cm <£d £ 1.6 cm for the 3GW fire.
The maximum loftable diameters for there two fires are 3.6 cm and 19 cm, respectively.

Att* =0, the particle is perturbed slightly upward, mimicking turbulence, to create a posi-
tive dV*/dt", because dV*(z;)/dt* = 0. This artificial boost is not needed for combusting
brands, for which dd*/dt” < 0, and has a negligible effect on the paths of non-burning spheres.
The particle accelerates upward rapidly through Region I, as shown in Fig. 5. The minimum loft-
ing height increases with diameter for constant p; ; the larger particles have a higher terminal
velocity that can be matched in the plume only at increased height. In Region II, acceleration
decreases dramatically until the particle reaches its maximum velocity relative to ground slightly
above z* = 3.3. In Region III, the plume velocity (and thus the drag force) decreases with height
max) = 0, but the plume is moving past the brand at the
sphere’s terminal velocity. The larger particles, with their higher terminal velocities, will come to

until drag again balances gravity. V*(z

rest at a fower height than the smaller particlesdue to the decay of Uy, ,(z") in Region III.

-In Fig. 6, the path for d] = 10000 is plotted for pg ; and p, ;. Although dg is the same
for both densities, the terminal velocity of a sphere decreases with decreasing density, so that the
brand with p | is lofted to z,, =210, as opposed to 6 for the higher density.

The initial and maximum lofting heights for non-combusting spherical particles are shown
as functions of d parameterized in P, in Fig. 7. The dotted lines demarcate the regions of the
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plume model; particles are lofted in Region I (z' < 1.32) and reach their maximum height in
Region I (z" > 3.3). For 1.2 x 10* <Re < 2.6 x 10%, C4 = 0.45 and the initial lofting height can
be approximated by

z, = 0.65d;p,. 3N
while the maximum loftable height is approximately
Zmax = 9-5(P5dg) " (32)

A non-burning sphere travels a straight, vertical line accelerating from z, and then decelerating to

*

z... - The paths of the combusting brands is more complex.

Spherical Firebrands

In this section, results are presented for combusting brands with burning-droplet regres-
sion rates. The same initial parameter ranges in d_ and p. are used as for the non-burning
spheres. The regression rate depends inversely on the the product pad;, so that the diameter

decreases faster the smaller the product is. The decrease in the brand diameter as it burns, param-

eterized in d, is shown in Fig. 8 for Pr =0.706, B = 1.2, and p, . which are typical for burning
wood in air over a house fire. These parameters will be used throughout this section.

Unlike non-burning particles, the combusting brands need not be perturbed from z,. The
diameter regression causes an imbalance in the forces that loft the brands, as shown in Figs. 9 and
10. Drag is proportional to d? and gravity is proportional to d3; therefore, as the diameter
decreases, the drag force decreases more slowly that the gravity force. The brands start from z;
and rise until they burn out. Although smaller particles are lofted from lower heights, they accel-
erate more quickly and reach their burnout height, z; , faster than the larger brands. The absolute
velocity of the larger particles decreases to near zero in Region III and then accelerates slowly as
they burn down to the small diameters. These larger brands spend a longer time at lower altitudes.
Because of this, note in Fig. 9 that all of the brands with d >4000 have the same z, . The curves
for height as a function of time, parameterized in p o are shown in Fig. 10. As p, decreases, the
burnout height increases. The shape of the curve for pJ , is similar to that for dj = 2000 in Fig.
9, which indicates that d; = 10000 is a small particle for pg | as dj = 2000 is a small particle for
Po.h-

The burnout height is shown as a function of d; in Fig. 11. It is of note that all particles
with d; > 4000 burn out at the same height, 2y =56, for p. . This suggests that although the
larger particles in the initial brand size distribution have longer lifetimes, the additional time is not
available for them to attain a higher height because they move more slowly. The paths for a large
range of particles collapse to a single curve for a particular density, as shown in Fig. 12 for p;' .
The shape and values of that path are dependent on density, as illustrated by Fig. 13. zp is
greater than 2y, (d;) because the decreasing diameter lowers the brand’s terminal velocity. This
increases the height at which the drag and gravity forces balance.

The particle velocity relative to the ground, as a function of height, is plotted in Fig. 14

7

143



(density dependence is illustrated in Fig. 15). The path of the brand with d; = 2000 illustrates
that not all of the brands for p;‘ | collapse to the same curve. Although this brand is subjected to
the greatest acceleration of the four depicted in Fig. 14, it does not have sufficient size to approach
the “collapsé" curve.

For the burning-droplet model, the regression rate is ~ 1/d" as shown in Eq. (24) so that the
rate increases as the diameter tends to zero. As a result, the brand acceleration, Eq. (22), has a
mass loss term that goes as 1/(d*)2. As d* approaches zero, the particle accelerates faster and
faster. Thus, burning brands rapidly approach the local plume velocity as they burn out, as shown
in Figs. 14 and 15. A three-dimensional view of z*(t*), parameterized in d*, is found in Fig. 16.
Time increases from front-center to back-right; diameter increases from front-center to back-left;
and height increases vertically. This figure combines all of the information in Figs. 8, 9, and 12
and also provides the initial particle height as a function of diameter, at t'= 0, and the burnout
height, for which d"= 0, as function of burnout time. Tt shows that the larger (d; > 4000 for Pon)
particles simply take longer to get to a single burnout height, z, = 56.

CONCLUSIONS

These calculations show that for a Baum-McCaffrey (B-M) plume there is a limit to the
size of the loftable brand. For spheres, the maximum loftable initial diameter is given by

dy max =27P5

0, max
where d* and p* are the dimensionless diameter and density. In dimensional terms,

: 2/15
dom 3= ()

where the symbols are defined in the notation. For cedar (p, = 300 kg/m?) spheres in a SOMW
fire, d°' max = 3.6 cm(1.5in).

For the range, 1.2 x 10* <Re < 2.6 x 10%, that describes many spherical brands, C, = 0.45
to within 5% . With this Cy, the minimum initial height from which a brand can be lofted by the
B-M plume is

zg=0.65d2p;.

z, = 0.65d0(%) :
a

For cedar spheres in a SOMW fire, the initial lofting height of a 3.6-cm-diameter sphere is 6 m (20
ft). Smaller spheres will have lower minimum lofting heights. The maximum height to which
non-burning spheres could rise, i.e. the height at which their terminal velocity equals the plume
velocity, has been calculated as a function of d* and p*. For C4 = 0.45, the maximum height is

Zoax = 9.5(pada)15.

In dimensional terms,

In dimensional terms,
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pa I.5 Qo
=os5( 2] | ——2 |,
o = 9335 ((pacpTo»/é]

For cedar in a SOMW fire, the maximum height is
Zpax(dy) = 0.1d51'5.

o and Zp,,, both in meters.

Additional calculations were made with the droplet burning model for the spherical brand
regression rate. The results shown in Figs. 8 through 16 indicate that burning brands are con-
sumed before they reach the maximum heights indicated above. A significant finding shown in
these figures is that there is a collapse of the large end of the initial brand size distribution so that
all brands greater than a certain diameter have the same burnout height (zy = 56 for d; > 4000
and p = 1/7600). For cedar spheres in a SOMW fire, d; = 4000 corresponds to d = 0.9 cm (0.4
in) and z;, = 260 m (850 ft).

Future work will implement an improved burning model with a regression rate that
includes forced-flow combustion. Propagation of brands downwind will be studied for simple
ambient flow models. Eventually, these burning brands will be inserted as Lagrangian particles in
the ALOFT Large Eddy Simulation model. This mode! was developed at NIST to describe the
flow field above large fires and to incorporate terrain and ambient wind effects [22]).
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NOTATION

A Baum and McCaffrey Plume Model Coeffi- v Scalar particle velocity relative to ground (m/s,

cient { ) w Scalar relative velocity of a particle to its sur-

A Cross-sectional area (mz) roundings (m/s)

B Mass transfer number ( ) z Vertical height of particle (m)

Cp specific heat of air (J/kg K) z Burn-out height of particle (m)

Cy Cefficient of drag ( ) Zy Initial height of particle in lofting phase (m)

d diameter (m) o Thermal diffusivity of air (m%/s)

D Diffusivity of air (m2/s) \Y Kinematic viscosity of air (mzls)

F Force (N) p density (kg/m3)

g Gravity (m/ s?) .

Le  Lewis number( ) ' Superscript

m particle mass (kg) . . .

n Exponent for Baum and McCaffrey Plume ' Dimensionless variable

Model () 7

Pr Prandtl Number ( ) SUbSCI’IptS

Qo Rate of heat release for the fire (W) a Air

Re Reynolds Number ( ) c Characteristic Constant

T, Ambient temperature (K) i Region of Baum and McCaffrey or Modified

U Vector-valued velocity of surroundings (m/s) Baum and McCaffrey plume model

Upm  Scalar Baum and McCaffrey centerline plume 1 Height limit

velocity (m/s) s Sphere

Plume,”" Combustion and Flame, 13:6, pp. 645-655, 1989.

1. Empty brackets denote dimensionless quantities.
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force exceeds that due to gravity as a
function of diameter and density. Pr=
0.706.
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Figure 6:  Plot of the velocity relative to ground
for non-burning particles. The plume
velocity has been included for refer-
ence. This figure gives the results for
two densities, p, = 1/7600 and 1/
90000, and an initial diameter of
d, = 10000.
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Figure 8:

Dimensionless Time, t’

Diameter as a function of time for a
the indicated initial diameters for den-
sity of p; = 1/7600, Pr=0.706,B =
1.2, and a burning-droplet regression
rate.
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Figure 9 Plots of particle height as a function
of time for the indicatcg initial diame-
ters and a density of p; = 1/7600,
Pr=0.706, B = 1.2, and a burning-
droplet diameter regression.
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Figure 11:

Dimensionless Initial Diameter, d,

Maximum height to which particles of
a given initial diameter can rise before
burning out for p; = 1/7600, Pr =
0.706,B=1.2,and a burning-droplet
regression rate.
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Figure 10:  Plots of particle height as a function
of time for the indicateq densities and
an initial diameter of d, = 10000, Pr
=0.706, B = 1.2, for a burning-droplet
diameter regression.
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Figure 12:

Dimensionless Diameter, d'

Particle height as a function of diame-
ter for the initial diameters indicated
and for a density of p* = 1,/7600,
Pr=0.706, and B = 12 for burning-
droplet diameter regression. The
“Maximum Loftable Height" is the
height to which a non-burning particle
of a particular diameter would rise.
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Figure 13:  Particle height as a function of diame-
ter for the densities ind‘icated and for
an initial diameter of d; = 10000 for
a burning-droplet regression rate, Pr=
0.706 and B=1.2.
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Figure 15:  Particle height as a function of parti-

cle velocity relative to ground for a
diameter of d; = 10000 and a bumn-
ing-droplet regression rate. The plume
velocity has been included for refer-
ence. Pr=0.706 and B=1.2.
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AY

150

05 1
Dimensionless Velocity, V' or Up,

Particle height as a function of parti-
cle velocity relative to ground for a
density of p; = 1/7600 for a burn-
ing-droplet regression rate. The
plume velocity has been included for
reference. Pr=0.706 and B = 1.2.

Three-dimensional representation of
z*(t") parameterized ind fora
sphere with a burning droplet regres-
sion rate. Curves are depicted in d;
in increments of 600 with p* =
1771600, Pr = 0.706, and B=1.2.

Dimensionless Time, t’



